Multiple MONOPTEROS-dependent pathways are involved in leaf initiation.

نویسندگان

  • Mathias Schuetz
  • Thomas Berleth
  • Jim Mattsson
چکیده

Initiation of leaves at the flanks of the shoot apical meristem occurs at sites of auxin accumulation and pronounced expression of auxin-inducible PIN-FORMED1 (PIN) genes, suggesting a feedback loop to progressively focus auxin in concrete spots. Because PIN expression is regulated by auxin response factor activity, including MONOPTEROS (MP), it appeared possible that MP affects leaf formation as a positive regulator of PIN genes and auxin transport. Here, we analyze a novel, completely leafless phenotype arising from simultaneous interference with both auxin signaling and auxin transport. We show that mp pin1 double mutants, as well as mp mutants treated with auxin-efflux inhibitors, display synergistic abnormalities not seen in wild type regardless of how strongly auxin transport was reduced. The synergism of abnormalities indicates that the role of MP in shoot meristem organization is not limited to auxin transport regulation. In the mp mutant background, auxin transport inhibition completely abolishes leaf formation. Instead of forming leaves, the abnormal shoot meristems dramatically increase in size, harboring correspondingly enlarged expression domains of CLAVATA3 and SHOOTMERISTEMLESS, molecular markers for the central stem cell zone and the complete meristem, respectively. The observed synergism under conditions of auxin efflux inhibition was further supported by an unrestricted PIN1 expression in mp meristems, as compared to a partial restriction in wild-type meristems. Auxin transport-inhibited mp meristems also lacked detectable auxin maxima. We conclude that MP promotes the focusing of auxin and leaf initiation in part through pathways not affected by auxin efflux inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning.

Developmental responses to the plant hormone auxin are thought to be mediated by interacting pairs from two protein families: short-lived inhibitory IAA proteins and ARF transcription factors binding to auxin-response elements. monopteros mutants lacking activating ARF5 and the auxin-insensitive mutant bodenlos fail to initiate the root meristem during early embryogenesis. Here we show that the...

متن کامل

MONOPTEROS directly activates the auxin-inducible promoter of the Dof5.8 transcription factor gene in Arabidopsis thaliana leaf provascular cells

MONOPTEROS (MP) is an auxin-responsive transcription factor that is required for primary root formation and vascular development, whereas Dof5.8 is a Dof-class transcription factor whose gene is expressed in embryos as well as the pre- and procambial cells in the leaf primordium in Arabidopsis thaliana. In this study, it is shown that MP directly activates the Dof5.8 promoter. Although no appar...

متن کامل

Multiple AUX/IAA–ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling

In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)-AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28-ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14-ARF7-ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/I...

متن کامل

Auxin signaling in Arabidopsis leaf vascular development.

A number of observations have implicated auxin in the formation of vascular tissues in plant organs. These include vascular strand formation in response to local auxin application, the effects of impaired auxin transport on vascular patterns and suggestive phenotypes of Arabidopsis auxin response mutants. In this study, we have used molecular markers to visualize auxin response patterns in deve...

متن کامل

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 148 2  شماره 

صفحات  -

تاریخ انتشار 2008